Quantcast
Viewing latest article 1
Browse Latest Browse All 2

Answer by Elaqqad for Covering $\mathbb{N}$ with disjoint arithmetic sequences

The equality $2$ can be determined using the observation that the sum of all elements belonging to each set $S_i$ is the sum of all residues so:$$ \overbrace{\frac{N}{r_1}a_1+r_1.\frac{N}{2r_1}(\frac{N}{r_1}-1)}^{\text{The sum of residus }\in S_1}+\cdots\cdots+\overbrace{\frac{N}{r_n}a_n+r_n.\frac{N}{2r_n}(\frac{N}{r_1}-1)}^{\text{The sum of residus }\in S_n}=\overbrace{\frac{N(N-1)}{2}}^{\text{The sum of all residus }}$$

with some simplification you get $(2)$


Viewing latest article 1
Browse Latest Browse All 2

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>